ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
C. Pralong Fauchère, M. Murphy, F. Jatuff, R. Chawla
Nuclear Science and Engineering | Volume 150 | Number 1 | May 2005 | Pages 27-36
Technical Paper | doi.org/10.13182/NSE05-A2499
Articles are hosted by Taylor and Francis Online.
In the framework of the LWR-PROTEUS project - an extended validation program for advanced light water reactor core analysis tools conducted at the Paul Scherrer Institute - the radial, internal variations of the total fission rate (Ftot) and the capture rate in 238U (C8) have been calculated for zero-burnup pins of a Westinghouse SVEA-96+ boiling water reactor fuel assembly using two codes, namely, CASMO-4 and HELIOS. While Ftot distributions predicted by CASMO-4 and HELIOS are in good agreement, C8 distributions show significant inconsistencies (20 to 30%). The calculations are compared with experimental results obtained using single photon emission computerized tomography for several SVEA-96+ pins irradiated in the zero-power reactor PROTEUS. The comparisons confirm the predicted shape of the Ftot distributions within UO2 pins and clearly indicate that HELIOS within-pin predictions for C8 are more reliable than CASMO-4 results. This is important for the derivation of gamma-ray self-absorption corrections when pin-integrated reaction rates are to be determined using the gamma-scanning technique. Thus, the use of CASMO-4-type within-pin distributions would lead to 3 to 4% discrepancies in the absolute, self-absorption-corrected pin-integrated values deduced for C8 and hence for C8/Ftot. For relative C8 distributions, the discrepancy would be much smaller, namely, up to ~1% if pins containing a burnable absorber are involved.