ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
Latest News
ANS joins others in seeking to discuss SNF/HLW impasse
The American Nuclear Society joined seven other organizations to send a letter to Energy Secretary Christopher Wright on July 8, asking to meet with him to discuss “the restoration of a highly functioning program to meet DOE’s legal responsibility to manage and dispose of the nation’s commercial and legacy defense spent nuclear fuel (SNF) and high-level radioactive waste (HLW).”
Michael Martin Nieto, A. C. Hayes, William B. Wilson, Corinne M. Teeter, William D. Stanbro
Nuclear Science and Engineering | Volume 149 | Number 3 | March 2005 | Pages 270-276
Technical Paper | doi.org/10.13182/NSE05-A2493
Articles are hosted by Taylor and Francis Online.
The feasibility of using the detection of electron antineutrinos produced in fission to monitor the time dependence of the plutonium content of nuclear power reactors is discussed. If practical, such a scheme would allow worldwide, automated monitoring of reactors and, thereby, the detection of certain proliferation scenarios. For GW(electric) power reactors, the count rates and the sensitivity of the antineutrino spectrum (to the core burnup) suggest that monitoring of the gross operational status of the reactor from outside the containment vessel is feasible. As the plutonium content builds up in a given burn cycle, the total number of antineutrinos steadily drops; and this variation is quite detectable, assuming fixed reactor power. The average antineutrino energy also steadily drops, and a measurement of this variation would be very useful to help offset uncertainties in the total reactor power. However, the expected change in the antineutrino signal from the diversion of a significant quantity of plutonium, which would typically require the diversion of as little as a single fuel assembly in a GW(electric) reactor, would be very difficult to detect.