ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
Latest News
ANS joins others in seeking to discuss SNF/HLW impasse
The American Nuclear Society joined seven other organizations to send a letter to Energy Secretary Christopher Wright on July 8, asking to meet with him to discuss “the restoration of a highly functioning program to meet DOE’s legal responsibility to manage and dispose of the nation’s commercial and legacy defense spent nuclear fuel (SNF) and high-level radioactive waste (HLW).”
J. Coulot, F. Lavielle, A. Faggiano, N. Bellon, B. Aubert, M. Schlumberger, M. Ricard
Nuclear Science and Engineering | Volume 149 | Number 2 | February 2005 | Pages 124-130
Technical Paper | doi.org/10.13182/NSE05-A2483
Articles are hosted by Taylor and Francis Online.
Standard macroscopic methods used to assess the dose in nuclear medicine are limited to cases of homogeneous radionuclide distributions and provide dose estimations at the organ level. In a few applications, like radioimmunotherapy, the mean dose to an organ is not suitable to explain clinical observations, and knowledge of the dose at the tissular level is mandatory. Therefore, one must determine how particles lose their energy and what is the best way to represent tissues. The Monte Carlo method is appropriate to solve the problem of particle transport, but the question of the geometric representation of biology remains. In this paper, we describe a software (CLUSTER3D) that is able to build randomly biologically representative sphere cluster geometries using a statistical description of tissues. These geometries are then used by our Monte Carlo code called DOSE3D to perform particle transport. First results obtained on thyroid models highlight the need of cellular and tissular data to take into account actual radionuclide distributions in tissues. The flexibility and reliability of the method makes it a useful tool to study the energy deposition at various cellular and tissular levels in any configuration.