ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Arthur C. Miller, Jr., Joseph L. Cochran, Vincent E. Lamberti
Nuclear Science and Engineering | Volume 149 | Number 2 | February 2005 | Pages 115-123
Technical Paper | doi.org/10.13182/NSE05-A2482
Articles are hosted by Taylor and Francis Online.
High-energy film radiography methods, adapted in the past to performing specific tasks, must now meet increasing demands to identify defects and perform critical measurements in a wide variety of manufacturing processes. Although film provides unequaled resolution for most components and assemblies, image quality must be enhanced with much more detailed information to identify problems and qualify features of interest inside manufactured items. The work described is concerned with improving current 9-MeV nondestructive practice by optimizing the important parameters involved in film radiography using computational methods. To follow important scattering effects produced by electrons, the Monte Carlo N-Particle transport code was used with advanced, highly parallel computer systems. The work has provided a more detailed understanding of latent image formation at high X-ray energies, and suggests that improvements can be made in our ability to identify defects and to obtain much more detail in images of fine features.