ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
IAEA report confirms safety of discharged Fukushima water
An International Atomic Energy Agency task force has confirmed that the discharge of treated water from Japan’s Fukushima Daiichi nuclear power plant is proceeding in line with international safety standards. The task force’s findings were published in the agency’s fourth report since Tokyo Electric Power Company began discharging Fukushima’s treated and diluted water in August 2023.
More information can be found on the IAEA’s Fukushima Daiichi ALPS Treated Water Discharge web page.
Fei Wang, Rizwan-uddin
Nuclear Science and Engineering | Volume 149 | Number 1 | January 2005 | Pages 107-114
Technical Paper | doi.org/10.13182/NSE149-107
Articles are hosted by Taylor and Francis Online.
A modified nodal integral method (MNIM) for two-dimensional, time-dependent Navier-Stokes equations is extended to three dimensions. The nodal integral method is based on local transverse integrations over finite size cells that reduce each partial differential equation to a set of ordinary differential equations (ODEs). Solutions of these ODEs in each cell for the transverse-averaged dependent variables are then utilized to develop the difference schemes. The discrete variables are scalar velocities and pressure, averaged over the faces of bricklike cells. The development of the MNIM is different from the conventional nodal method in two ways: (a) it is Poisson-type pressure equation based and (b) the convection terms are retained on the left side of the transverse-integrated equations and thus contribute to the homogeneous part of the solution. The first feature leads to a set of symmetric transverse-integrated equations for all the velocities, and the second feature yields distributions of constant + linear + exponential form for the transverse-averaged velocities. The scheme is tested on three-dimensional lid-driven cavity problems in cube- and prism-shaped cavities. Results obtained using the MNIM on fairly coarse meshes are comparable with reference solutions obtained using much finer meshes.