ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
Brian C. Franke, Anil K. Prinja
Nuclear Science and Engineering | Volume 149 | Number 1 | January 2005 | Pages 1-22
Technical Paper | doi.org/10.13182/NSE05-A2473
Articles are hosted by Taylor and Francis Online.
We present a computationally efficient single event Monte Carlo approach for calculating dose from electrons. Analog elastic scattering and inelastic energy-loss differential cross sections for electrons are converted into corresponding discrete cross sections that are constrained to exactly preserve low-order moments of the analog cross sections. While the method has been implemented and tested for the Rutherford model for scattering and energy loss, its dependence solely on cross-section moments makes our approach arbitrarily general.By comparison with analog Monte Carlo calculations, we demonstrate that few discrete angles and energies are required to achieve accurate dose distributions, and the calculations are fast. The method is capable of yielding accurate results across the entire spatial extent of the transport problem, from relatively isotropic scattering to highly forward-peaked scattering. We compare the accuracy of the angular approximation with the Goudsmit-Saunderson angular approximation commonly used by condensed history methods and similarly analyze the energy approximation. Finally, we present an investigation of the combined approximations and illustrate the accuracy of this method in the presence of a material interface. The computational efficiency of each method is explicitly compared using timing studies.