ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
Dmitri Ziabletsev, Maria Avramova, Kostadin Ivanov
Nuclear Science and Engineering | Volume 148 | Number 3 | November 2004 | Pages 414-425
Technical Paper | doi.org/10.13182/NSE04-A2467
Articles are hosted by Taylor and Francis Online.
The subchannel code COBRA-TF has been introduced for an evaluation of thermal margins on the local pin-by-pin level in a pressurized water reactor. The coupling of COBRA-TF with TRAC-PF1/NEM is performed by providing from TRAC to COBRA-TF axial and radial thermal-hydraulic boundary conditions and relative pin-power profiles, obtained with the pin power reconstruction model of the nodal expansion method (NEM). An efficient algorithm for coupling of the subchannel code COBRA-TF with TRAC-PF1/NEM in the parallel virtual machine environment was developed addressing the issues of time synchronization, data exchange, spatial overlays, and coupled convergence. Local feedback modeling on the pin level was implemented into COBRA-TF, which enabled updating the local form functions and the recalculation of the pin powers in TRAC-PF1/NEM after obtaining the local feedback parameters. The coupled TRAC-PF1/NEM/COBRA-TF code system was tested on the rod ejection accident and main steam line break benchmark problems. In both problems, the local results are closer than before the introduced multilevel coupling to the corresponding critical limits. This fact indicates that the assembly average results tend to underestimate the accident consequences in terms of local safety margins. The capability of local safety evaluation, performed simultaneously (online) with coupled global three-dimensional neutron kinetics/thermal-hydraulic calculations, is introduced and tested. The obtained results demonstrate the importance of the current work.