ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Joint NEA project performs high-burnup test
An article in the OECD Nuclear Energy Agency’s July news bulletin noted that a first test has been completed for the High Burnup Experiments in Reactivity Initiated Accident (HERA) project. The project aim is to understand the performance of light water reactor fuel at high burnup under reactivity-initiated accidents (RIA).
G. Mignot, E. Royer, B. Rameau, N. Todorova
Nuclear Science and Engineering | Volume 148 | Number 2 | October 2004 | Pages 235-246
Technical Paper | doi.org/10.13182/NSE04-A2454
Articles are hosted by Taylor and Francis Online.
The CEA/DEN modeling and computation results with the CATHARE, CRONOS2, and FLICA4 codes of the Organisation for Economic Co-operation and Development boiling water reactor turbine trip benchmark are presented. The first exercise of the benchmark to model the whole reactor thermal hydraulics with specified power has been performed with the CATHARE system code. Exercise 2, devoted to core thermal-hydraulic neutronic analysis with provided boundary conditions and neutronic cross sections, has been carried out with the CRONOS2 and FLICA4 codes. Finally, exercise 3, combining system thermal hydraulics and core three-dimensional thermal-hydraulics-neutronics, was computed with the three coupled codes: CATHARE, CRONOS2, and FLICA4.Our one-dimensional thermal-hydraulic reactor computation agrees well with the benchmark reference data and demonstrates the capacities of CATHARE to model a turbine trip transient. Coupled three-dimensional thermal-hydraulic and neutronic analysis displays a high sensitivity of the power peak to the core thermal-hydraulic model. The use of at least 100 channels is recommended to achieve reasonable results for integral and local parameters. Deviations between experimental data and exercise 3 results are discussed: timing of events, core pressure drop, and neutronic model. Finally, analysis of extreme scenarios as sensitivity studies on the transient to assess the effect of the scram, the bypass relief valve, and the steam relief valves is presented.