ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
M. Brovchenko, D. Heuer, E. Merle-Lucotte, M. Allibert, V. Ghetta, A. Laureau, P. Rubiolo
Nuclear Science and Engineering | Volume 175 | Number 3 | November 2013 | Pages 329-339
Technical Paper | doi.org/10.13182/NSE12-70
Articles are hosted by Taylor and Francis Online.
Molten salt reactors are liquid fuel reactors so that they are flexible in operation, but they are very different from solid fuel reactors in the approach to safety. This study concentrates on the specific concept named Molten Salt Fast Reactor (MSFR). Since this new nuclear technology is in development, safety is an essential point to be considered all along the research and development studies. After a short description of the MSFR systems, necessary to device accidental scenarios, this paper will focus on the decay heat evaluation of such a reactor. Among different contributions, the decay heat of fission products in the MSFR is evaluated to be low (3% of nominal power), mainly due to the reprocessing during the reactor operation. As a result, the contribution of the actinides is significant (0.5% of nominal power). However, the decay heat of the fission products is important, and among the different uncertainty sources, the fission yield uncertainties are pointed out. The unprotected loss of heat sink transients are studied in this paper. It appears that slow transients are favorable (>1 min) to minimize the temperature increase of the fuel salt. This work will be the basis of further safety studies as well as an essential parameter for the design of the draining system.