ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE issues new NEPA rule and procedures—and accelerates DOME reactor testing
Meeting a deadline set in President Trump’s May 23 executive order “Reforming Nuclear Reactor Testing at the Department of Energy,” the DOE on June 30 updated information on its National Environmental Policy Act (NEPA) rulemaking and implementation procedures and published on its website an interim final rule that rescinds existing regulations alongside new implementing procedures.
Man Gyun Na, Dong Won Jung, Sun Mi Lee
Nuclear Science and Engineering | Volume 148 | Number 1 | September 2004 | Pages 153-161
Technical Paper | doi.org/10.13182/NSE04-A2447
Articles are hosted by Taylor and Francis Online.
A receding horizon control method is used to solve on-line, at each time step, an optimization problem for a finite future interval and to implement the first optimal control input as the current control input. The receding horizon control method is combined with a parameter estimator to overcome the problems of the linear modeling and time-varying characteristics of a process. It is a suitable control strategy for time-varying systems, in particular, because the parameter estimator identifies a controller design model recursively at each time step, and also the receding horizon controller recalculates an optimal input at each time step by using newly measured signals. The proposed controller is applied to the axial power distribution control in a pressurized water reactor. The reactor dynamics model used for computer simulations is a two-point xenon oscillation model in which the reactor core is axially divided into two regions (upper and lower halves) and each region is assumed to have a single input and a single output and to be coupled with the other region. It is shown from numerical simulations that the proposed controller exhibits very fast tracking responses due to the step and ramp changes of axial target shape and also works well in a time-varying parameter condition.