ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
P. Ravetto, M. M. Rostagno, G. Bianchini, M. Carta, A. D'Angelo
Nuclear Science and Engineering | Volume 148 | Number 1 | September 2004 | Pages 79-88
Technical Paper | doi.org/10.13182/NSE02-10D
Articles are hosted by Taylor and Francis Online.
The mathematical foundations of the multipoint method are illustrated and the method is developed for the neutron kinetics of multiplying systems to treat physical situations in which spatial and spectral effects can play an important role in transient conditions, and hence the classical point-kinetic model can become inadequate. In the present paper the method is specifically developed for source-driven systems, through a proper adaptation of the factorization-projection technique used to derive other classic kinetic models. The results presented for some test cases show the advantages that can be attained with respect to the standard point model, even when treating relevant spatial and spectral transients. It is then shown how the technique can be inserted into a quasi-static framework.