A projectile penetrates with high velocity the lid of a gas receptacle, compresses and heats a statically precompressed volume of a gaseous deuterium-tritium mixture, and may possibly start fusion reactions by releasing and focusing a shock wave.

A high amount of energy is delivered to a small volume in a very short time. The wall of the receptacle and the high density of projectile and receptacle material act as confinement. For the acceleration of projectile and receptacle, a series of interconnected (cascaded) and modified light gas guns is used.

In the first part of this note, technical aspects are outlined. By a synchronized operation of the light gas guns, projectile and receptacle hit each other in the center of a reaction chamber. If fusion reactions can be started, a gas-cooled high-temperature moderator, containing breeding material for tritium, will surround the reaction chamber. In the second part the shock wave propagation and focusing is described in approximation. The results should encourage a precise theoretical treatment of the problem.