ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Joint NEA project performs high-burnup test
An article in the OECD Nuclear Energy Agency’s July news bulletin noted that a first test has been completed for the High Burnup Experiments in Reactivity Initiated Accident (HERA) project. The project aim is to understand the performance of light water reactor fuel at high burnup under reactivity-initiated accidents (RIA).
M. M. R. Williams
Nuclear Science and Engineering | Volume 147 | Number 3 | July 2004 | Pages 292-306
Technical Paper | doi.org/10.13182/NSE04-A2434
Articles are hosted by Taylor and Francis Online.
Nuclear waste drums can contain a collection of radioactive components of uncertain activity and randomly dispersed in position. This implies that the dose-rate at the surface of different drums in a large assembly of similar drums can have significant variations according to the physical makeup and configuration of the waste components. The present paper addresses this problem by treating the drum, and its waste, as a stochastic medium. It is assumed that the sources in the drum contribute a dose-rate to some external point. The strengths and positions are chosen by random numbers, the dose-rate is calculated and, from several thousand realizations, a probability distribution for the dose-rate is obtained. It is shown that a very close approximation to the dose-rate probability function is the log-normal distribution. This allows some useful statistical indicators, which are of environmental importance, to be calculated with little effort.As an example of a practical situation met in the storage of radioactive waste containers, we study the problem of "hotspots." These arise in drums in which most of the activity is concentrated on one radioactive component and hence can lead to the possibility of large surface dose-rates. It is shown how the dose-rate, the variance, and some other statistical indicators depend on the relative activities on the sources. The results highlight the importance of such hotspots and the need to quantify their effect.