ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
I. Pázsit, N. S. Garis, O. Glöckler
Nuclear Science and Engineering | Volume 124 | Number 1 | September 1996 | Pages 167-177
Technical Paper | doi.org/10.13182/NSE96-A24232
Articles are hosted by Taylor and Francis Online.
A neutron noise-based technique for the localization of excessively vibrating control rods is elaborated upon in the previous three papers of this series. The method is based on the inversion of a formula that expresses the auto- and cross spectra of three neutron detector signals through the parameters of the vibrating rod, i.e., equilibrium position and displacement components. Successful tests of the algorithm with both simulated and real data were reported in the previous papers. The algorithm had nevertheless certain drawbacks, namely, that its use requires expert knowledge, the redundancy of extra detectors cannot be utilized, and with realistic transfer functions the calculations are rather lengthy. The use of neural networks offers an alternative way of performing the inversion procedure. This possibility was investigated by constructing a network that was trained to determine the rod position from the detector spectra. It was found that all shortcomings of the traditional localization method can be eliminated. The neural network-based identification was also tested with success.