ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
PR: American Nuclear Society welcomes Senate confirmation of Ted Garrish as the DOE’s nuclear energy secretary
Washington, D.C. — The American Nuclear Society (ANS) applauds the U.S. Senate's confirmation of Theodore “Ted” Garrish as Assistant Secretary for Nuclear Energy at the U.S. Department of Energy (DOE).
“On behalf of over 11,000 professionals in the fields of nuclear science and technology, the American Nuclear Society congratulates Mr. Garrish on being confirmed by the Senate to once again lead the DOE Office of Nuclear Energy,” said ANS President H.M. "Hash" Hashemian.
C. H. Lee, Y. J. Kim, J. W. Song, C. O. Park
Nuclear Science and Engineering | Volume 124 | Number 1 | September 1996 | Pages 160-166
Technical Paper | doi.org/10.13182/NSE96-A24231
Articles are hosted by Taylor and Francis Online.
The spectral history problem encountered in reconstructing local homogeneous power distributions is investigated. Because of difficulties in most nodal codes concerning spectral interactions between neighboring assemblies when rebuilding the local power distribution, nodal codes assume a constant spectrum or do not properly consider local spectrum variations within an assembly. A simple, fuel-type-independent method is presented to eliminate the spectrum-induced errors from local homogeneous powers within an assembly over the entire burnup range. The method, which is generalized for its application to any fuel type in the entire assembly burnup domain, uses the proportional relationship between macroscopic cross sections and average spectral history indices. Verification results through embedded calculations and an actual core calculation show that local homogeneous power errors are reduced to the same magnitude as flux errors. The error reduction is conspicuous in the cases of mixed-oxide and highly poisoned fuel assemblies.