ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Taewan Noh, Warren F. Miller, Jr.
Nuclear Science and Engineering | Volume 124 | Number 1 | September 1996 | Pages 18-30
Technical Paper | doi.org/10.13182/NSE96-A24221
Articles are hosted by Taylor and Francis Online.
Using the operator form of a synthetic acceleration, the P1 acceleration [diffusion synthetic acceleration (DSA)] and P2 acceleration schemes for one-dimensional slab and the P1 and simplified P2 acceleration schemes for two-dimensional x-y geometry are derived. The convergence rate of each scheme for a simple model problem is compared, and the result is generalized by performing a Fourier analysis. In the one-dimensional case, the new second-moment P2 acceleration outperforms an earlier third-moment P2 acceleration developed by Miller and Larsen. However, it is still less efficient than P1 acceleration. Similar results show that the P1 acceleration converges faster than the simplified P2 acceleration in two-dimensional x-y geometry. These results confirm that one cannot simply assume that replacement of the DSA method with a higher order operator will lead to a smaller spectral radius.