ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
NN Asks: What did you learn from ANS’s Nuclear 101?
Mike Harkin
When ANS first announced its new Nuclear 101 certificate course, I was excited. This felt like a course tailor-made for me, a transplant into the commercial nuclear world. I enrolled for the inaugural session held in November 2024, knowing it was going to be hard (this is nuclear power, of course)—but I had been working on ramping up my knowledge base for the past year, through both my employer and at a local college.
The course was a fast-and-furious roller-coaster ride through all the key components of the nuclear power industry, in one highly challenging week. In fact, the challenges the students experienced caught even the instructors by surprise. Thankfully, the shared intellectual stretch we students all felt helped us band together to push through to the end.
We were all impressed with the quality of the instructors, who are some of the top experts in the field. We appreciated not only their knowledge base but their support whenever someone struggled to understand a concept.
Peng Wang, Tunc Aldemir
Nuclear Science and Engineering | Volume 147 | Number 1 | May 2004 | Pages 1-25
Technical Paper | doi.org/10.13182/NSE04-A2415
Articles are hosted by Taylor and Francis Online.
The cell-to-cell-mapping technique (CCMT) models system evolution in terms of probability of transitions within a user-specified time interval (e.g., data-sampling interval) between sets of user-defined parameter/state variable magnitude intervals (cells). The cell-to-cell transition probabilities are obtained from the given linear or nonlinear plant model. In conjunction with monitored data and the plant model, the Dynamic System Doctor (DSD) software package uses the CCMT to determine the probability of finding the unmonitored parameter/state variables in a given cell at a given time recursively from a Markov chain. The most important feature of the methodology with regard to model-based fault diagnosis is that it can automatically account for uncertainties in the monitored system state, inputs, and modeling uncertainties through the appropriate choice of the cells, as well as providing a probabilistic measure to rank the likelihood of faults in view of these uncertainties. Such a ranking is particularly important for risk-informed regulation and risk monitoring of nuclear power plants. The DSD estimation algorithm is based on the assumptions that (a) the measurement noise is uniformly distributed and (b) the measured variables are part of the state variable vector. A new theoretical basis is presented for CCMT-based state/parameter estimation that waives these assumptions using a Bayesian interpretation of the approach and expands the applicability range of DSD, as well as providing a link to the conventional state/parameter estimation schemes. The resulting improvements are illustrated using a point reactor xenon evolution model in the presence of thermal feedback and compared to the previous DSD algorithm. The results of the study show that the new theoretical basis (a) increases the applicability of methodology to arbitrary observers and arbitrary noise distributions in the monitored data, as well as to arbitrary uncertainties in the model parameters; (b) leads to improvements in the estimation speed and accuracy; and (c) allows the estimator to be used for noise reduction in the monitored data. The connection between DSD and conventional state/parameter estimation schemes is shown and illustrated for the least-squares estimator, maximum likelihood estimator, and Kalman filter using a recently proposed scheme for directly measuring local power density in nuclear reactor cores.