ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Remembering ANS member Gil Brown
Brown
The nuclear community is mourning the loss of Gilbert Brown, who passed away on July 11 at the age of 77 following a battle with cancer.
Brown, an American Nuclear Society Fellow and an ANS member for nearly 50 years, joined the faculty at Lowell Technological Institute—now the University of Massachusetts–Lowell—in 1973 and remained there for the rest of his career. He eventually became director of the UMass Lowell nuclear engineering program. After his retirement, he remained an emeritus professor at the university.
Sukesh Aghara, chair of the Nuclear Engineering Department Heads Organization, noted in an email to NEDHO members and others that “Gil was a relentless advocate for nuclear energy and a deeply respected member of our professional community. He was also a kind and generous friend—and one of the reasons I ended up at UMass Lowell. He served the university with great dedication. . . . Within NEDHO, Gil was a steady presence and served for many years as our treasurer. His contributions to nuclear engineering education and to this community will be dearly missed.”
Peng Wang, Tunc Aldemir
Nuclear Science and Engineering | Volume 147 | Number 1 | May 2004 | Pages 1-25
Technical Paper | doi.org/10.13182/NSE04-A2415
Articles are hosted by Taylor and Francis Online.
The cell-to-cell-mapping technique (CCMT) models system evolution in terms of probability of transitions within a user-specified time interval (e.g., data-sampling interval) between sets of user-defined parameter/state variable magnitude intervals (cells). The cell-to-cell transition probabilities are obtained from the given linear or nonlinear plant model. In conjunction with monitored data and the plant model, the Dynamic System Doctor (DSD) software package uses the CCMT to determine the probability of finding the unmonitored parameter/state variables in a given cell at a given time recursively from a Markov chain. The most important feature of the methodology with regard to model-based fault diagnosis is that it can automatically account for uncertainties in the monitored system state, inputs, and modeling uncertainties through the appropriate choice of the cells, as well as providing a probabilistic measure to rank the likelihood of faults in view of these uncertainties. Such a ranking is particularly important for risk-informed regulation and risk monitoring of nuclear power plants. The DSD estimation algorithm is based on the assumptions that (a) the measurement noise is uniformly distributed and (b) the measured variables are part of the state variable vector. A new theoretical basis is presented for CCMT-based state/parameter estimation that waives these assumptions using a Bayesian interpretation of the approach and expands the applicability range of DSD, as well as providing a link to the conventional state/parameter estimation schemes. The resulting improvements are illustrated using a point reactor xenon evolution model in the presence of thermal feedback and compared to the previous DSD algorithm. The results of the study show that the new theoretical basis (a) increases the applicability of methodology to arbitrary observers and arbitrary noise distributions in the monitored data, as well as to arbitrary uncertainties in the model parameters; (b) leads to improvements in the estimation speed and accuracy; and (c) allows the estimator to be used for noise reduction in the monitored data. The connection between DSD and conventional state/parameter estimation schemes is shown and illustrated for the least-squares estimator, maximum likelihood estimator, and Kalman filter using a recently proposed scheme for directly measuring local power density in nuclear reactor cores.