ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Joint NEA project performs high-burnup test
An article in the OECD Nuclear Energy Agency’s July news bulletin noted that a first test has been completed for the High Burnup Experiments in Reactivity Initiated Accident (HERA) project. The project aim is to understand the performance of light water reactor fuel at high burnup under reactivity-initiated accidents (RIA).
Juan José Ortiz, Ignacio Requena
Nuclear Science and Engineering | Volume 146 | Number 1 | January 2004 | Pages 88-98
Technical Paper | doi.org/10.13182/NSE04-A2395
Articles are hosted by Taylor and Francis Online.
A genetic algorithm is used to optimize the nuclear fuel reload for a boiling water reactor, and an order coding is proposed for the chromosomes and appropriate crossover and mutation operators. The fitness function was designed so that the genetic algorithm creates fuel reloads that, on one hand, satisfy the constrictions for the radial power peaking factor, the minimum critical power ratio, and the maximum linear heat generation rate while optimizing the effective multiplication factor at the beginning and end of the cycle. To find the values of these variables, a neural network trained with the behavior of a reactor simulator was used to predict them. The computation time is therefore greatly decreased in the search process. We validated this method with data from five cycles of the Laguna Verde Nuclear Power Plant in Mexico.