ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
World Bank, IAEA partner to fund nuclear energy
The World Bank and the International Atomic Energy Agency signed an agreement last week to cooperate on the construction and financing of advanced nuclear projects in developing countries, marking the first partnership since the bank ended its ban on funding for nuclear energy projects.
F. H. Fröhner
Nuclear Science and Engineering | Volume 145 | Number 3 | November 2003 | Pages 342-353
Technical Paper | doi.org/10.13182/NSE03-A2387
Articles are hosted by Taylor and Francis Online.
Application-oriented evaluated nuclear data libraries such as ENDF and JEFF contain not only recommended values but also uncertainty information in the form of "covariance" or "error files." These can neither be constructed nor utilized properly without a thorough understanding of uncertainties and correlations. It is shown how incomplete information about errors is described by multivariate probability distributions or, more summarily, by covariance matrices, and how correlations are caused by incompletely known common errors. Parameter estimation for the practically most important case of the Gaussian distribution with common errors is developed in close analogy to the more familiar case without. The formalism shows that, contrary to widespread belief, common ("systematic") and uncorrelated ("random" or "statistical") errors are to be added in quadrature. It also shows explicitly that repetition of a measurement reduces mainly the statistical uncertainties but not the systematic ones. While statistical uncertainties are readily estimated from the scatter of repeatedly measured data, systematic uncertainties can only be inferred from prior information about common errors and their propagation. The optimal way to handle error-affected auxiliary quantities ("nuisance parameters") in data fitting and parameter estimation is to adjust them on the same footing as the parameters of interest and to integrate (marginalize) them out of the joint posterior distribution afterward.