ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Seconds Matter: Rethinking Nuclear Facility Security for the Modern Threat Landscape
In today’s rapidly evolving threat environment, nuclear facilities must prioritize speed and precision in their security responses—because in critical moments, every second counts. An early warning system serves as a vital layer of defense, enabling real-time detection of potential intrusions or anomalies before they escalate into full-blown incidents. By providing immediate alerts and actionable intelligence, these systems empower security personnel to respond decisively, minimizing risk to infrastructure, personnel, and the public. The ability to anticipate and intercept threats at the earliest possible stage not only enhances operational resilience but also reinforces public trust in the safety of nuclear operations. Investing in such proactive technologies is no longer optional—it’s essential for modern nuclear security.
R. D. M. Garcia
Nuclear Science and Engineering | Volume 144 | Number 3 | July 2003 | Pages 200-210
Technical Paper | doi.org/10.13182/NSE03-A2353
Articles are hosted by Taylor and Francis Online.
A new numerical method for computing first-flight collision, escape, and transmission probabilities in three dimensions is described. The method consists of subdividing the domain into parts called elements and assuming, as an approximation, that the interaction between a source element and a sink element takes place only along the path that joins their centers of mass. The calculation is repeated with the number of elements increased successively and Richardson extrapolation to an infinite number of elements applied to the sequence of results until convergence to the desired degree of accuracy is attained. Solutions to some test problems indicate that, in general, four steps of repeated Richardson extrapolation are sufficient to yield results with an accuracy comparable to that of existing codes.