ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Bechtel-led SIMCO awarded three-year WIPP contract extension
The Department of Energy has issued a three-year contract extension to Salado Isolation Mining Contractors (SIMCO), a single-purpose entity comprising Bechtel National and Los Alamos Technical Associates as a teaming contractor, for the continued management and operations of the Waste Isolation Pilot Plant, the DOE’s geologic repository for defense-generated transuranic waste in southeastern New Mexico.
T. Courau, G. Marleau
Nuclear Science and Engineering | Volume 143 | Number 1 | January 2003 | Pages 19-32
Technical Paper | doi.org/10.13182/NSE02-11
Articles are hosted by Taylor and Francis Online.
Generalized perturbation theory (GPT) can be used as a means to evaluate sensitivity coefficients or to approximate variations in integrated lattice parameters resulting from small changes in local cell properties. Using a first-order perturbation approach, the changes in the integral parameters can be written as a sum of a direct term that takes directly into account the variations in the cell properties and an indirect term that approximates the neutron flux variations resulting from the perturbation. For a lattice cell code that relies on a collision probability technique to solve the transport equation, a problem related to the evaluation of the perturbed transport operator also arises because the collision probability matrix depends on the total cross section. A technique is presented to simulate these variations in the collision probability matrix using approximate source term variations. Comparison with exact calculations will show that the results obtained using GPT with these approximate source terms are reliable provided the perturbations remain small. Results for a parametric study of a two-dimensional pressurized water reactor 17 × 17 assembly and void reactivity calculations for a DUPIC-fueled CANDU cell are also presented.