ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Thea Energy releases preconceptual plans for Helios fusion power plant
Fusion technology company Thea Energy announced this week that it has completed the preconceptual design of its fusion power plant, called Helios. According to the company, Helios is “the first stellarator fusion power plant architecture that is realistic to build and operate with hardware that is available today, and that is tolerant to the rigors of manufacturing, construction, long-term operation, and maintenance of a commercial device.”
C. Martín-del-Campo, J. L. François, L. B. Morales
Nuclear Science and Engineering | Volume 142 | Number 1 | September 2002 | Pages 107-115
Technical Note | doi.org/10.13182/NSE02-A2292
Articles are hosted by Taylor and Francis Online.
In this paper the implementation of the tabu search (TS) optimization method to a boiling water reactor's (BWR's) fuel assembly (FA) axial design is described. The objective of this implementation is to test the TS method for the search of optimal FA axial designs. This implementation has been linked to the reactor core simulator CM-PRESTO in order to evaluate each design proposed in a reactor cycle operation. The evaluation of the proposed fuel designs takes into account the most important safety limits included in a BWR in-core analysis based on the Haling principle. Results obtained show that TS is a promising method for solving the axial design problem. However, it merits further study in order to find better adaptation of the TS method for the specific problem.