ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
Allen J. Toreja, Rizwan-uddin
Nuclear Science and Engineering | Volume 142 | Number 1 | September 2002 | Pages 85-95
Technical Note | doi.org/10.13182/NSE02-A2290
Articles are hosted by Taylor and Francis Online.
Adaptive mesh refinement capability has been developed and implemented for the time-dependent nodal integral method (NIM). The combination of adaptive mesh refinement (AMR) with the NIM maintains the coarse mesh efficiency of the nodal method by allowing high resolution only in regions where it is needed. Furthermore, exploiting certain features of the nodal method, such as using transverse-integrated variables for efficient error estimation and using node interior reconstruction to develop accurate interpolation operators, can enhance the AMR process. In this work, the NIM-AMR is formally developed, and applications of the NIM-AMR to convection-diffusion problems are presented. Results show that for a given accuracy, the NIM-AMR can be several times faster than the NIM alone.