ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
M. E. Dunn
Nuclear Science and Engineering | Volume 142 | Number 1 | September 2002 | Pages 48-56
Technical Note | doi.org/10.13182/NSE02-A2286
Articles are hosted by Taylor and Francis Online.
The Reich-Moore (RM) formulation is used extensively in many isotope/nuclide evaluations to represent neutron cross-section data for the resolved-resonance region. The RM equations require the evaluation of complex matrices (i.e., matrices with complex quantities) that are a function of the resonance energy and corresponding resonance parameters. Although the RM equations are documented in the open literature, computational pitfalls may be encountered with the implementation of the RM equations in a cross-section processing code. Based on experience, numerical instabilities in the form of nonphysical oscillations can occur in the calculated absorption, capture, or elastic scattering cross sections. To illustrate possible numerical instabilities, the conventional RM equations are presented, and the conditions that lead to numerical problems in the cross-section calculations are identified and demonstrated for 28Si and 60Ni. In an effort to circumvent the computational problems, detailed or revised RM expressions have been developed to efficiently and accurately calculate cross sections for neutron-induced reactions in the resolved-resonance region. The revised equations can be used to avoid numerical problems associated with the implementation of the RM formulation in a cross-section processing code. The revised Reich-Moore equations are also used to demonstrate the improved cross-section results (i.e., without numerical instabilities) for 28Si and 60Ni.