ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
ANS sends waste policy recommendations to DOE
The American Nuclear Society has sent a letter to Energy Secretary Chris Wright with a set of recommendations for the Department of Energy to take to establish an effective national program to manage the storage, reprocessing, and final disposal of U.S. commercial used nuclear fuel.
James S. Warsa, Todd A. Wareing, Jim E. Morel
Nuclear Science and Engineering | Volume 141 | Number 3 | July 2002 | Pages 236-251
Technical Paper | doi.org/10.13182/NSE141-236
Articles are hosted by Taylor and Francis Online.
We recently presented a method for efficiently solving linear discontinuous discretizations of the two-dimensional P1 equations on rectangular meshes. The linear system was efficiently solved with Krylov iterative methods and a novel two-level preconditioner based on a linear continuous finite element discretization of the diffusion equation. Here, we extend the preconditioned solution method to three-dimensional, unstructured tetrahedral meshes. Solution of the P1 equations forms the basis of a diffusion synthetic acceleration (DSA) scheme for three-dimensional SN transport calculations with isotropic scattering. The P1 equations and the transport equation are both discretized with isoparametric linear discontinuous finite elements so that the DSA method is fully consistent. Fourier analysis in three dimensions and computational results show that this DSA scheme is stable and very effective. The fully consistent method is compared to other "partially consistent" DSA schemes. Results show that the effectiveness of the partially consistent schemes can degrade for skewed or optically thick mesh cells. In fact, one such scheme can degrade to the extent of being unstable even though it is both unconditionally stable and effective on rectangular grids. Results for a model application show that our fully consistent DSA method can outperform the partially consistent DSA schemes under certain circumstances.