ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
NRC approves V.C. Summer’s second license renewal
Dominion Energy’s V.C. Summer nuclear power plant, in Jenkinsville, S.C., has been authorized to operate for 80 years, until August 2062, following the renewal of its operating license by the Nuclear Regulatory Commission for a second time.
Taro Ueki
Nuclear Science and Engineering | Volume 141 | Number 2 | June 2002 | Pages 101-110
Technical Paper | doi.org/10.13182/NSE141-101
Articles are hosted by Taylor and Francis Online.
This paper investigates intergenerational correlation in the Monte Carlo k-eigenvalue calculation of a neutron effective multiplicative factor. To this end, the exponential transform for path stretching has been applied to large fissionable media with localized highly multiplying regions because in such media an exponentially decaying shape is a rough representation of the importance of source particles. The numerical results show that the difference between real and apparent variances virtually vanishes for an appropriate value of the exponential transform parameter. This indicates that the intergenerational correlation of k-eigenvalue samples could be eliminated by the adjoint biasing of particle transport. The relation between the biasing of particle transport and the intergenerational correlation is therefore investigated in the framework of collision estimators, and the following conclusion has been obtained: Within the leading order approximation with respect to the number of histories per generation, the intergenerational correlation vanishes when immediate importance is constant, and the immediate importance under simulation can be made constant by the biasing of particle transport with a function adjoint to the source neutron's distribution, i.e., the importance over all future generations.