ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
M. M. R. Williams
Nuclear Science and Engineering | Volume 141 | Number 1 | May 2002 | Pages 13-31
Technical Paper | doi.org/10.13182/NSE02-A2263
Articles are hosted by Taylor and Francis Online.
A method has been developed for calculating the probability distribution of the multiplication factor in a system in which the fissile or absorbing elements are randomly distributed across the core and can have random material properties. It has practical applications to the storage of radioactive waste in drums in which fissile material is stored in a background matrix. The procedure is based upon the source-sink method of heterogeneous reactors developed by Feinberg, Galanin, Horning and Stewart in which the fuel element or absorber is replaced by a point sink of thermal neutrons and a point source of fast neutrons. The positions and material properties are sampled from a random distribution and a probability distribution is built up for the multiplication factor keff. Calculations are made for spheres in a cubic system and probability distributions, mean values and variances are obtained for 1, 2, 3, 5, 10 and 25 spheres in both water and graphite moderated systems. Some interesting fine structure is found in the probability distributions which is attributed to preferred symmetric groupings of the spheres in the lattice. We also examine the effect of small random movements of the spheres about their mean positions and in particular study the effect of anisotropy of motion, i.e. perpendicular to the plane and in the plane, on the mean value of the multiplication factor and the associated probability distributions. Some experimental results obtained by Lloyd on reactivity changes in random lattices are examined and qualitative agreement is obtained. A convenient form of the three dimensional Greens function for a rectangular box is developed which is especially useful for numerical purposes due to its rapid convergence properties.