ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Do Sam Kim, Nam Zin Cho
Nuclear Science and Engineering | Volume 140 | Number 3 | March 2002 | Pages 267-284
Technical Paper | doi.org/10.13182/NSE02-A2260
Articles are hosted by Taylor and Francis Online.
To develop kinetics calculational capability of the analytic function expansion nodal methodology for space-dependent feedback problems, a novel method with the time-dependent solution decomposed into an analytic part and a polynomial correction part is proposed. The analytic part consists of the analytic solutions of the "quasi-static" diffusion equation and the polynomial part is determined by applying a Galerkin scheme. The results tested on several benchmark problems (two-dimensional and three-dimensional) show that 1 node/assembly calculation and a large time-step size can be used for high accuracy. The new feedback calculation method removes almost all the errors induced from space-dependent feedback. Also, it is shown that the coarse group rebalance acceleration scheme and conventional techniques for kinetics calculation (exponential transformation for time variable and bilinear weighting for control rod cusping problem) can be easily incorporated into the method.