ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE issues new NEPA rule and procedures—and accelerates DOME reactor testing
Meeting a deadline set in President Trump’s May 23 executive order “Reforming Nuclear Reactor Testing at the Department of Energy,” the DOE on June 30 updated information on its National Environmental Policy Act (NEPA) rulemaking and implementation procedures and published on its website an interim final rule that rescinds existing regulations alongside new implementing procedures.
David B. Reister, Paul L. Chambré
Nuclear Science and Engineering | Volume 48 | Number 2 | June 1972 | Pages 211-218
Technical Paper | doi.org/10.13182/NSE72-A22472
Articles are hosted by Taylor and Francis Online.
Current approximation methods for space-time reactor problems with temperature feedback lack an error estimate. The method discussed in this paper yields an approximate solution with an error estimate. Upper and lower bounds are sought for the flux and temperature at all points in a reactor for all time. The bounds are the solutions of a set of ordinary differential equations which are similar to the point model equations. Having chosen an unusual nonlinear form for the bounds, a comparison theorem of the Nagumo-Westphal type is used to derive the equation which the bound must satisfy. Optimum control theory and Pontryagin’s Maximum Principle determine the optimum bounds.In an example, bounds are determined for three standard nonlinear reactor models. The bounds are narrow and lead to interesting conjectures about the exact solution.