ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
David B. Reister, Paul L. Chambré
Nuclear Science and Engineering | Volume 48 | Number 2 | June 1972 | Pages 211-218
Technical Paper | doi.org/10.13182/NSE72-A22472
Articles are hosted by Taylor and Francis Online.
Current approximation methods for space-time reactor problems with temperature feedback lack an error estimate. The method discussed in this paper yields an approximate solution with an error estimate. Upper and lower bounds are sought for the flux and temperature at all points in a reactor for all time. The bounds are the solutions of a set of ordinary differential equations which are similar to the point model equations. Having chosen an unusual nonlinear form for the bounds, a comparison theorem of the Nagumo-Westphal type is used to derive the equation which the bound must satisfy. Optimum control theory and Pontryagin’s Maximum Principle determine the optimum bounds.In an example, bounds are determined for three standard nonlinear reactor models. The bounds are narrow and lead to interesting conjectures about the exact solution.