ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
The top 10 states of nuclear
The past few years have seen a concerted effort from many U.S. states to encourage nuclear development. The momentum behind nuclear-friendly policies has grown considerably, with many states repealing moratoriums, courting nuclear developers and suppliers, and in some cases creating advisory groups and road maps to push deployment of new nuclear reactors.
S. Benck, I. Slypen, J.-P. Meulders, V. Corcalciuc, M. B. Chadwick
Nuclear Science and Engineering | Volume 140 | Number 1 | January 2002 | Pages 86-95
Technical Paper | doi.org/10.13182/NSE02-A2246
Articles are hosted by Taylor and Francis Online.
Double-differential cross sections (spectra) for light charged particle (proton, deuteron, triton, and alpha) emission in fast neutron-induced reactions on aluminum are reported for eight incident neutron energies between 25 and 55 MeV, augmenting previous results at 63 MeV. Angular distributions were measured at 15 laboratory angles between 20 and 160 deg. Procedures for data taking and data reduction are presented. Deduced energy-differential and total production cross sections are also reported. Experimental cross sections are compared to existing experimental proton-induced data and to nuclear model calculations that include preequilibrium and compound nucleus decay mechanisms. These calculations formed the basis of a recent set of higher-energy ENDF/B-VI data evaluations (the LA150 Library), and therefore, the present measurements facilitate a testing of the accuracy of these evaluated cross sections. This is important for accelerator-driven-systems design, where radiation transport simulation codes require accurate nuclear data to guide engineering design. Comparisons between the experimental data and the calculated values indicate that while proton, triton, and alpha-particle emission are modeled fairly accurately, deuteron emission is only poorly described, and further improvements to the nuclear reaction models for preequilibrium cluster emission are needed.