ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
Richard Sanchez, Li Mao, Simone Santandrea
Nuclear Science and Engineering | Volume 140 | Number 1 | January 2002 | Pages 23-50
Technical Paper | doi.org/10.13182/NSE140-23
Articles are hosted by Taylor and Francis Online.
Boundary conditions are an essential part of the approximations used in the numerical solution of the transport equation. The collision probability and the characteristic methods are considered, and exact and approximated tracking methods to be used in the implementation of geometrical motions and albedo conditions are analyzed. The analysis of the exact boundary-condition treatment is carried out for finite domains and infinite lattices, where periodic trajectories must be used. Albedo-like boundary conditions may be used to approximate exact geometrical motions via spatially piecewise constant and either piecewise constant or discrete angular approximations for the boundary fluxes. We also have examined angular product quadrature formulas and shown that the recently proposed Bickley-Naylor quadratures do not respect particle conservation in the presence of anisotropy of scattering. Numerical examples show that the approximated albedo-type boundary method converges toward the results obtained with the exact boundary treatment. However, because of problems related to the multigroup implementation, numerical extra burden in group iterations prevents the efficient use of approximated boundary conditions for multigroup calculations. Nevertheless, this method remains a candidate of choice for use in multidomain calculations via interface boundary fluxes.