ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
Brian C. Franke, Edward W. Larsen
Nuclear Science and Engineering | Volume 140 | Number 1 | January 2002 | Pages 1-22
Technical Paper | doi.org/10.13182/NSE02-A2242
Articles are hosted by Taylor and Francis Online.
We consider the steady-state transport of normally incident pencil beams of radiation in slabs of material. A method has been developed for determining the exact radial moments of three-dimensional (3-D) beams of radiation as a function of depth into the slab, by solving systems of one-dimensional (1-D) transport equations. We implement these radial-moment equations in the ONEBFP discrete ordinates code and simulate energy-dependent, coupled electron-photon beams using CEPXS-generated cross sections. Modified PN synthetic acceleration is employed to speed up the iterative convergence of the 1-D charged-particle calculations. For high-energy photon beams, a hybrid Monte Carlo/discrete ordinates method is examined. We demonstrate the efficiency of the calculations and make comparisons with 3-D Monte Carlo calculations. Thus, by solving 1-D transport equations, we obtain realistic multidimensional information concerning the broadening of electron-photon beams. This information is relevant to fields such as industrial radiography, medical imaging, radiation oncology, particle accelerators, and lasers.