ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Illinois legislature lifts ban on nuclear energy, funds clean energy
The Illinois General Assembly passed a clean energy bill on October 30 that would, in part, lift a 30-year moratorium on new nuclear energy in the state and create incentives for more energy storage.
Bradley L. Wescott, Rizwan-uddin
Nuclear Science and Engineering | Volume 139 | Number 3 | November 2001 | Pages 293-305
Technical Paper | doi.org/10.13182/NSE01-A2239
Articles are hosted by Taylor and Francis Online.
An alternate formulation of the recently proposed modified nodal integral method (MNIM) has been developed to further reduce computation time when solving nonlinear partial differential equations with a nonlinear convection term such as Burgers' equation and the Navier-Stokes equation. In this formulation, by adding and subtracting a linearized convection term, in which the node-averaged velocity at the previous time step multiplies the spatial derivative, the node-interior approximate analytical solution is developed in terms of this previous time-step node-averaged velocity. This leads to a set of discrete equations with coefficients that need to be evaluated only once each time step for each node, resulting in a significant reduction in computing time when compared with the original MNIM formulation. A numerical scheme using the node-averaged velocities at the previous time step - to be referred to as M2NIM - for the two-dimensional, time-dependent Burgers' equation has been developed. The method is shown to be second order and to posses inherent upwinding. When compared with MNIM, numerical results show a significant reduction in the computation time without sacrificing accuracy.