ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
M. E. Rising, A. K. Prinja, P. Talou
Nuclear Science and Engineering | Volume 175 | Number 2 | October 2013 | Pages 188-203
Technical Paper | doi.org/10.13182/NSE12-93
Articles are hosted by Taylor and Francis Online.
The polynomial chaos expansion-stochastic collocation method (PCE-SCM) is demonstrated to be a computationally efficient approach for propagating nuclear data uncertainties evaluated for the prompt fission neutron spectra (PFNS) of n + 235U and n + 239Pu fission reactions through two fast neutron critical benchmark experiments. A principal component decomposition of the PFNS covariance matrices yields an efficient representation of the uncertainty in terms of two to four random variables. Both normal and uniform distributions are considered for these random variables, and the random output variables (angular flux and k-eigenvalue) are expressed in terms of Hermite and Legendre chaos expansions, respectively. Tensor product Hermite and Legendre Gauss quadrature sets, respectively, are used to relate the deterministic chaos expansion coefficients to solutions of independent transport k-eigenvalue problems, and the resulting polynomial chaos expansion provides a complete statistical characterization of the uncertainty in the output variables. Direct random sampling of the PFNS followed by repeated solution of the transport problem to create an ensemble of solutions is used to benchmark results obtained from the PCE-SCM implementation. Both direct random sampling and the PCE-SCM implementation yield comparable results where, for the Jezebel and Lady Godiva critical assemblies, the calculated uncertainties in keff resulting from the PFNS propagated uncertainties are found to be of the same order or larger than reported experimental measurement uncertainties, respectively. The PCE-SCM implementation results obtained require orders of magnitude less computational resources compared with the direct random sampling approach.