ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Seconds Matter: Rethinking Nuclear Facility Security for the Modern Threat Landscape
In today’s rapidly evolving threat environment, nuclear facilities must prioritize speed and precision in their security responses—because in critical moments, every second counts. An early warning system serves as a vital layer of defense, enabling real-time detection of potential intrusions or anomalies before they escalate into full-blown incidents. By providing immediate alerts and actionable intelligence, these systems empower security personnel to respond decisively, minimizing risk to infrastructure, personnel, and the public. The ability to anticipate and intercept threats at the earliest possible stage not only enhances operational resilience but also reinforces public trust in the safety of nuclear operations. Investing in such proactive technologies is no longer optional—it’s essential for modern nuclear security.
J. Dorning
Nuclear Science and Engineering | Volume 33 | Number 1 | July 1968 | Pages 65-80
Technical Paper | doi.org/10.13182/NSE68-A20919
Articles are hosted by Taylor and Francis Online.
The pulsed-neutron experiment discrete time-decay constants are examined in slab and spherical geometries using a one-term degenerate isotropic scattering kernel. The integral form of the space-, energy-, and time-dependent neutron-transport equation is considered in the proof of four theorems that determine the nature of the decay constants as a function of system size. The theorems are verified by actual calculation of the decay constants for the simpler of the two degenerate-kernel models considered. The spatial eigenfunctions that become flatter as system size is decreased are also computed. The one-velocity problem is solved as a special case. Pulsed-neutron experiment size-dependent extrapolation distances are defined and calculated in such a way as to bring exp (iB · r) theory decay constant results into agreement with those obtained by a more rigorous treatment of the spatial dependence, even for vanishingly small systems. Again, the monoenergetic problem is included as a special case. The variable extrapolation distances approach the Milne problem value as system size is increased. The variation of the extrapolation distance with system dimension is discussed in terms of opposing effects of the thermalization and transport phenomena. Estimates of leakage angular distributions and energy spectra in slabs are calculated from single iterations (performed analytically) on spatial functions synthesized from asymptotic solutions using the size-dependent extrapolation distances. The nature of the singularity in the angular distributions within extremely small systems is investigated. Finally, physical explanations for the changes in the leakage angular distributions and energy spectra (which are diffusion cooled) with slab dimensions are proffered.