ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
S. P. Congdon, M. R. Mendelson
Nuclear Science and Engineering | Volume 33 | Number 2 | August 1968 | Pages 151-161
Technical Paper | doi.org/10.13182/NSE68-A20653
Articles are hosted by Taylor and Francis Online.
The derivation of blackness boundary conditions is reviewed and generalized into a standard matrix formalism that is valid for any order PN approximation. It is then shown that for a finite slab effective diffusion and absorption matrices can be found which reproduce blackness boundary conditions at the interfaces. In the continuous or infinitely many mesh point description of the black region, the analysis leads to infinite series expressions for the equivalent matrices, which have been evaluated explicitly by means of the Caley-Hamilton theorem for the case of the P 3 approximation. Equivalent matrices have also been derived for two- and three-mesh-point descriptions of the black region. Numerical calculations for three model problems indicate that P3 blackness theory is a great improvement over conventional P3 theory and is roughly equivalent to P5 theory in the prediction of both the exterior scalar flux and the absorption rate in the black region.