A two-dimensional energy and time-of-flight charged-particle spectrometer has been developed and used to measure the double-differential cross-section (DDX) data of (n, xp) and (n, x) reactions for several elements with 14.1-MeV incident neutrons at OKTAVIAN, the Intense 14-MeV Neutron Source Facility of Osaka University. The DDX data of the 51V(n, xp), 51V(n, x), natFe(n, xp), natFe(n, x), 59Co(n, xp), 59Co(n, x), natNi(n, x), natCu(n, x), 93Nb(n, xp), 93Nb(n, x), and natMo(n, xp) reactions are measured. The angle-integrated energy differential cross-section (EDX) data were deduced from the measured DDX data and compared with other experimental results [except for the 59Co(n, xp) reaction] and evaluated nuclear data of JENDL fusion file (JENDL-FF). A comparison was also done with the ENDF/B-VI for the total reaction cross sections of all measured reactions except for the natMo(n, xp) reaction and the EDX of the natNi(n, x) and natCu(n, x) reactions. The theoretical calculations were done by using the SINCROS-II code. The measured data agreed fairly well with other data for almost all the reactions. The JENDL-FF and SINCROS-II data underestimate the measured EDX data for the reactions of 93Nb(n, x) and natMo(n, xp). For the natFe(n, xp), natFe(n, x), 59Co(n, x), and natNi(n, x) reactions, smaller data are given than other data, i.e, other experimental data, JENDL-FF, and ENDF/B-VI. The SINCROS-II code can reproduce well for both the proton and alpha-particle emission cross-section values.