ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
Jeffrey A. Favorite
Nuclear Science and Engineering | Volume 175 | Number 1 | September 2013 | Pages 44-69
Technical Paper | doi.org/10.13182/NSE12-17
Articles are hosted by Taylor and Francis Online.
It is often desirable to solve radiation transport problems in one-dimensional spherical geometries even if the actual object being modeled is not spherical. It may be possible to use perturbation theory to account for the difference between the real multidimensional system and the spherical approximation. This idea is tested using uncollided as well as multigroup inhomogeneous transport problems with upscattering. Asymmetric and nonuniform perturbations are made to the shielding (not the source) of spherical geometries, including transformations from a sphere to a cube (the surface transformation function is derived), and Schwinger, Roussopolos, and combined perturbation estimates are applied. For uncollided fluxes, perturbation theory, particularly the Schwinger estimate, worked very well when the response of interest was the flux measured at a symmetric spherical 4 detector external to the geometry, but perturbation theory did not work well when the response of interest was the flux measured at a single external point (unless extra care was taken to account for geometric effects). For neutron-induced gamma-ray line fluxes, the Roussopolos estimate worked well when the response of interest was the flux measured at an external 4 detector or an external point detector.