ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
PR: American Nuclear Society welcomes Senate confirmation of Ted Garrish as the DOE’s nuclear energy secretary
Washington, D.C. — The American Nuclear Society (ANS) applauds the U.S. Senate's confirmation of Theodore “Ted” Garrish as Assistant Secretary for Nuclear Energy at the U.S. Department of Energy (DOE).
“On behalf of over 11,000 professionals in the fields of nuclear science and technology, the American Nuclear Society congratulates Mr. Garrish on being confirmed by the Senate to once again lead the DOE Office of Nuclear Energy,” said ANS President H.M. "Hash" Hashemian.
R. G. Alsmiller, Jr., D. C. Irving, H. S. Moran
Nuclear Science and Engineering | Volume 32 | Number 1 | April 1968 | Pages 56-61
Technical Paper | doi.org/10.13182/NSE68-A18824
Articles are hosted by Taylor and Francis Online.
The straightahead approximation, i.e., the approximation that the secondary particles from nucleon-nucleus collisions are emitted in the direction of the incident nucleon, is often used in space-vehicle shielding studies. The validity of this approximation has been tested by comparing calculations made with the angular distribution of secondary particles properly taken into account with calculations using the approximation. Comparisons between the calculations are given for both monoenergetic protons and a typical flare spectrum normally incident on slab shields followed by tissue. The results indicate that the approximation is sufficiently accurate to justify its use in obtaining estimates of the secondary-particle contribution to the dose behind thin shields.