ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Nuclear moratoriums crumble around the world
The recent surge in positive sentiment about nuclear as the most viable answer to global energy needs and decarbonization goals has found governments around the world taking steps to reverse course on decades-old bans, moratoriums, and restrictions on new nuclear development.
R. G. Alsmiller, Jr., D. C. Irving, H. S. Moran
Nuclear Science and Engineering | Volume 32 | Number 1 | April 1968 | Pages 56-61
Technical Paper | doi.org/10.13182/NSE68-A18824
Articles are hosted by Taylor and Francis Online.
The straightahead approximation, i.e., the approximation that the secondary particles from nucleon-nucleus collisions are emitted in the direction of the incident nucleon, is often used in space-vehicle shielding studies. The validity of this approximation has been tested by comparing calculations made with the angular distribution of secondary particles properly taken into account with calculations using the approximation. Comparisons between the calculations are given for both monoenergetic protons and a typical flare spectrum normally incident on slab shields followed by tissue. The results indicate that the approximation is sufficiently accurate to justify its use in obtaining estimates of the secondary-particle contribution to the dose behind thin shields.