Current light water reactors (LWRs) depend for the protection of core integrity on a multitude of active systems and components, such as instrumentation, cables, electronic logics, relays, actuators, etc., and on human judgment. This approach to safety has led to a complex and expensive plant design in which all parts of the plant where these systems are present must be protected against damage due to, e.g., earthquake. It has also failed to persuade the public about the safety of the reactors because of the existing (but very small) probability of multiple failures leading to core meltdown. With the process inherent ultimate safety (PIUS) approach, this dependence on active systems is eliminated. The safety is now no longer a result of their intervention but is built into the thermohydraulics of the primary system itself. The PIUS primary system response to a number of severe anticipated transients without scram (ATWS) is described, as studied by means of a specially developed computer simulation program. The method is shown by which the thermohydraulic self-protection properties of the primary system terminates these ATWS transients, which could have severe consequences in a conventional LWR, with neither the core nor the rest of the plant suffering any damage (beyond the initial failure assumed). This has important economic consequences. The surveillance and control systems used to run the plant and the buildings in which they are housed can be designed as for a fossil plant, since they no longer have the ultimate responsibility for nuclear safety. The ensuing design simplification pays for the more expensive pressure vessel and primary system. Inherent safety is obtained as a bonus.