ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
Jakob Weitman
Nuclear Science and Engineering | Volume 18 | Number 2 | February 1964 | Pages 246-259
Technical Paper | doi.org/10.13182/NSE64-A18325
Articles are hosted by Taylor and Francis Online.
The effective resonance integral of thorium oxide rods has been determined as a function of their surface-to-mass ratio. The range of S/M values covered is 0.15 - 0.65 cm2/g. An experimental technique based on the comparison of activities obtained in thermal and slowing-down neutron fluxes was employed. The shape of the resonance neutron spectrum was determined from measurements with a fast chopper and from calculations, permitting deduction of a correction factor which relates the experimental values to the ideal 1/E case. The results are summarized by the following expression: The main contribution to the margin of error arises from the uncertainties in the 4% spectral correction applied, in the 1.5 b “l/v” part deducted and in the 1510 b infinite-dilution integral of gold, used as a standard. In order to compare the consistency of Dresner's first equivalence theorem and Nordheim's numerical calculations relative to our results, the resonance integral values for thorium metal rods obtained previously by Hellstrand and Weitman have been recalculated, using recent cross section and spectrum data. The new formula is It differs from the old one mainly because of the proved non-l/v behaviour of the thorium cross section below the first resonance.