ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Y. Danon, M. S. Moore, P. E. Koehler, P. E. Littleton, G. G. Miller, M. A. Ott, L. J. Rowton, W. A. Taylor, J. B. Wilhelmy, M. A. Yates, A. D. Carlson, R. Harper, R. Hilko
Nuclear Science and Engineering | Volume 124 | Number 3 | November 1996 | Pages 482-491
Technical Paper | doi.org/10.13182/NSE96-A17926
Articles are hosted by Taylor and Francis Online.
Transmutation of actinide waste into fission products could be enhanced by using resonance fission of odd-odd target materials; those of interest are 232Pa, 238Np, and 242Am. Fission cross-section measurements of two of these short-lived materials were performed at Los Alamos National Laboratory. Samples were produced by the (d,2n) reaction in the Los Alamos Ion Beam Facility followed by fast radiochemistry to separate the odd-odd target of interest. The fission cross section of the nanogram samples was measured in a high intensity pulsed neutron beam produced by 800-MeVproton spallation. Using this procedure, the fission cross sections of the 1.3-day 232Pa and 2.1-day 238Np were successfully measured in the energy range from 0.01 eV to 50 keV. The fission cross section of the relatively long-life isotope 2S6Np was also measured in the same system while the short half-life isotopes were being prepared. The results and resonance analysis are presented.