ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
High temperature fission chambers engineered for AMR/SMR safety and performance
As the global energy landscape shifts towards safer, smaller, and more flexible nuclear power, Small Modular Reactors (SMRs) and Gen. IV* technologies are at the forefront of innovation. These advanced designs pose new challenges in size, efficiency, and operating environment that traditional instrumentation and control solutions aren’t always designed to handle.
You-Jin Jung, Jaesik Hwang, Jei-Won Yeon, Bong Hyun Boo, Kyuseok Song
Nuclear Science and Engineering | Volume 172 | Number 2 | October 2012 | Pages 202-207
Technical Paper | doi.org/10.13182/NSE11-98
Articles are hosted by Taylor and Francis Online.
The dispersion properties of boron carbide (B4C) microparticles in aqueous media were investigated by measuring the particle size distribution, the dispersibility, and the zeta potential as these properties relate to their application as neutron absorbers in fuel-storage pool water. The B4C powder is composed of particles with a narrow size distribution, with a d50 (mean diameter) of 0.65 m. The amount of B4C particles dispersed decreased exponentially with increasing dispersion time. The dispersibility of B4C particles increased with an increase in the loading of B4C particles and reached a maximum value at 12.91 wt%. The zeta potential of the B4C suspension was measured as a function of pH and temperature. The B4C suspension has a negative zeta potential value in the pH range between 2 and 12. The dispersion of B4C particles was not greatly influenced by the addition of boric acid (H3BO3). The absolute value of the zeta potential decreased with increasing temperature.