ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
DNFSB spots possible bottleneck in Hanford’s waste vitrification
Workers change out spent 27,000-pound TSCR filter columns and place them on a nearby storage pad during a planned outage in 2023. (Photo: DOE)
While the Department of Energy recently celebrated the beginning of hot commissioning of the Hanford Site’s Waste Treatment and Immobilization Plant (WTP), which has begun immobilizing the site’s radioactive tank waste in glass through vitrification, the Defense Nuclear Facilities Safety Board has reported a possible bottleneck in waste processing. According to the DNFSB, unless current systems run efficiently, the issue could result in the interruption of operations at the WTP’s Low-Activity Waste Facility, where waste vitrification takes place.
During operations, the LAW Facility will process an average of 5,300 gallons of tank waste per day, according to Bechtel, the contractor leading design, construction, and commissioning of the WTP. That waste is piped to the facility after being treated by Hanford’s Tanks Side Cesium Removal (TSCR) system, which filters undissolved solid material and removes cesium from liquid waste.
According to a November 7 activity report by the DNFSB, the TSCR system may not be able to produce waste feed fast enough to keep up with the LAW Facility’s vitrification rate.
Ho Jin Park, Hyung Jin Shim, Han Gyu Joo, Chang Hyo Kim
Nuclear Science and Engineering | Volume 172 | Number 1 | September 2012 | Pages 66-77
Technical Paper | doi.org/10.13182/NSE11-22
Articles are hosted by Taylor and Francis Online.
The purpose of this paper is to present the Monte Carlo (MC) method augmented by the B1 spectrum to generate few-group diffusion theory constants, to assess their qualification in terms of the core depletion analysis, and thus to validate the MC method implemented into the Seoul National University MC code, McCARD, as a few-group diffusion theory constant generator. To do so, two-step core neutronics analyses are conducted for two types of power reactors, pressurized water reactors and very high temperature gas-cooled reactors, by the McCARD/MASTER code system in which McCARD is used as a MC few-group constant generation code and MASTER as a deterministic core analysis code. The two-step calculations for the effective multiplication factors and assembly power distributions of the two types of power reactor cores by McCARD/MASTER are compared with the reference calculations from McCARD, the nuclear design report, or measurements. By showing excellent agreement between McCARD/MASTER and the reference neutronics analyses for the two types of power reactors, it is concluded that the MC method implemented in McCARD can generate few-group diffusion theory constants that are well qualified for high-accuracy two-step core neutronics calculations.