ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Beyond conventional boundaries: Innovative construction technologies pave the way for advanced reactor deployment
In a bid to tackle the primary obstacle in nuclear deployment—construction costs—those in industry and government are moving away from traditional methods and embracing innovative construction technologies.
Tuomas Viitanen, Jaakko Leppänen
Nuclear Science and Engineering | Volume 171 | Number 2 | June 2012 | Pages 165-173
Technical Paper | doi.org/10.13182/NSE11-36
Articles are hosted by Taylor and Francis Online.
This paper introduces a new stochastic method for taking the effect of thermal motion into account on the fly in a Monte Carlo neutron transport calculation. The method is based on explicit treatment of the motion of target nuclei at collision sites and, consequently, requires simply cross sections at a temperature of 0 K regardless of the number of temperatures in the problem geometry. It utilizes rejection sampling techniques to manage the fact that total cross sections become distributed quantities. The method has a novel capability of accurately modeling continuous temperature distributions.The new stochastic method is verified using a simple test program, which compares its results to an analytical reference solution based on NJOY-broadened cross sections. Future implementation to Monte Carlo reactor physics code Serpent is also discussed shortly.