ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
Cory D. Ahrens
Nuclear Science and Engineering | Volume 170 | Number 1 | January 2012 | Pages 98-101
Technical Note | doi.org/10.13182/NSE10-69TN
Articles are hosted by Taylor and Francis Online.
Since the introduction of the angular segmentation or Sn method some 60 years ago, there have been many advances in the understanding of the method and many improvements to it. Indeed, the Sn method is now a widely used technique for deterministic solution of the transport equation. For three-dimensional (3-D) calculations, the method relies on numerical quadratures for the sphere, which integrate certain subspaces of spherical harmonics. The construction of such quadratures can be difficult. Here we report the development of new, highly efficient quadratures for the sphere that are invariant under the icosahedral rotation group. We compare the efficiency of the standard level-symmetric quadratures commonly used for 3-D Sn calculations and see that the new quadratures can be as much as 70% more efficient than the standard quadratures.