ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
BWRX-300 SMR passes U.K. regulatory milestone
GE Vernova Hitachi Nuclear Energy’s BWRX-300 small modular reactor has completed the second step of the generic design assessment (GDA) process in the United Kingdom. In this step, the U.K. Office for Nuclear Regulation, the Environment Agency, and Natural Resources Wales did not identify “any fundamental safety, security safeguard or environmental protection shortfalls with the design of the BWRX-300.” Step 1 was completed in December 2024.
D. A. Knoll, H. Park, Kord Smith
Nuclear Science and Engineering | Volume 167 | Number 2 | February 2011 | Pages 122-132
Technical Paper | doi.org/10.13182/NSE09-75
Articles are hosted by Taylor and Francis Online.
The use of the Jacobian-free Newton-Krylov (JFNK) method within the context of nonlinear diffusion acceleration (NDA) of source iteration is explored. The JFNK method is a synergistic combination of Newton's method as the nonlinear solver and Krylov methods as the linear solver. JFNK methods do not form or store the Jacobian matrix, and Newton's method is executed via probing the nonlinear discrete function to approximate the required matrix-vector products. Current application of NDA relies upon a fixed-point, or Picard, iteration to resolve the nonlinearity. We show that the JFNK method can be used to replace this Picard iteration with a Newton iteration. The Picard linearization is retained as a preconditioner. We show that the resulting JFNK-NDA capability provides benefit in some regimes. Furthermore, we study the effects of a two-grid approach, and the required intergrid transfers when the higher-order transport method is solved on a fine mesh compared to the low-order acceleration problem.