ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
R. N. Hwang
Nuclear Science and Engineering | Volume 167 | Number 1 | January 2011 | Pages 1-39
Technical Paper | doi.org/10.13182/NSE10-004
Articles are hosted by Taylor and Francis Online.
The fundamental basis regarding treatment of unresolved resonances and the construction of probability tables and the relevant issues with their application to reactor physics is critically examined. A theoretical model using integral transform techniques is developed that provides a viable alternative to the stochastic-based “ladder” method widely used to construct probability tables. A brief review of the statistical theory for treating the unresolved resonances is presented, followed by a critical examination of these methods. Then a reference method for computing various probability distributions at 0 K is derived analytically for Breit-Wigner resonances. This reference model provides the analytical insight and conceptual basis for extension to the general case of arbitrary temperature. The generalization to arbitrary temperature is accomplished using the Chebyshev expansion while maintaining the general forms of the distributions. Results of extensive benchmark calculations to verify the viability of the proposed method are presented. Finally, there is discussion of the remaining challenges in application of this new analytical approach, in particular, the issue of its extension beyond the Breit-Wigner approximation.