ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
From Capitol Hill: Nuclear is back, critical for America’s energy future
The U.S. House Energy and Commerce Subcommittee on Energy convened its first hearing of the year, “American Energy Dominance: Dawn of the New Nuclear Era,” on January 7, where lawmakers and industry leaders discussed how nuclear energy can help meet surging electricity demand driven by artificial intelligence, data centers, advanced manufacturing, and national security needs.
Lei Zhu, Benoit Forget
Nuclear Science and Engineering | Volume 166 | Number 3 | November 2010 | Pages 239-253
Technical Paper | doi.org/10.13182/NSE09-84
Articles are hosted by Taylor and Francis Online.
This study describes the generalized multigroup energy treatment for the neutron transport equation. Discrete Legendre orthogonal polynomials (DLOPs) are used to expand the energy dependence of the angular flux into a set of flux moments. The leading (zeroth)-order equation is identical to a standard multigroup solution, while the higher-order equations are decoupled from each other and only depend on the leading-order solution because of the orthogonality property of the DLOPs. This decoupling leads to computational times comparable to the coarse-group calculation but provides an accurate fine-group energy spectrum. One-dimensional single-assembly and core calculations were performed to demonstrate the potential of the discrete generalized multigroup method. Computational results show that the discrete generalized multigroup method can produce an accurate fine-group whole-core solution for less computational time. A source update process is also introduced that provides improvement of integral quantities such as eigenvalue and reaction rates over the coarse-group solution.