ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Nuclear power’s new rule book: Managing uncertainty in efficiency, safety, and independence
The U.S. nuclear industry is standing at its most volatile regulatory moment yet—one that will shape the trajectory and the safety of the industry for decades to come. Recent judicial, legislative, and executive actions are rewriting the rules governing the licensing and regulation of nuclear power reactors. Although these changes are intended to promote and accelerate the deployment of new nuclear energy technologies, the collision of multiple legal shifts—occurring simultaneously and intersecting with profound technological uncertainties—is overwhelming the Nuclear Regulatory Commission and threatening to destabilize investor and industry expectations.
C. Berglöf, M. Fernández-Ordóñez, D. Villamarín, V. Bécares, E. M. González-Romero, Victor Bournos, Ivan Serafimovich, Sergei Mazanik, Yurii Fokov
Nuclear Science and Engineering | Volume 166 | Number 2 | October 2010 | Pages 134-144
Technical Paper | doi.org/10.13182/NSE09-87
Articles are hosted by Taylor and Francis Online.
The area ratio method of Sjöstrand is generally considered one of the most reliable reactivity determination methods and thus is a major candidate for off-line calibration purposes in future accelerator-driven systems for high-level waste incineration. In this work, the Sjöstrand area ratio method has been evaluated experimentally under thorough conditions in the strongly heterogeneous subcritical facility YALINA-Booster. Both strengths and weaknesses of the method have been identified. Most surprisingly, it has been found that the area ratio reactivity estimates may differ a factor of 2 depending on detector position. It is also shown that this strong spatial dependence can be explained based on a simple two-region point-kinetics model and corrected by means of correction factors obtained through Monte Carlo simulations. A new Monte Carlo correction method is proposed that includes, at the same time, the spatial disturbance and the effective delayed neutron fraction. In that way, the value of the effective multiplication factor is obtained from the measured dollar reactivity without the need of calculating the effective delayed neutron fraction explicitly, and thereby, the delayed neutron transport is performed only once. Further, it has been found that the Sjöstrand area ratio method is not sensitive to perturbations of the source multiplication factor.